Altered Differential Control of Sympathetic Outflow Following Sedentary Conditions: Role of Subregional Neuroplasticity in the RVLM

نویسندگان

  • Madhan Subramanian
  • Patrick J. Mueller
چکیده

Despite the classically held belief of an "all-or-none" activation of the sympathetic nervous system, differential responses in sympathetic nerve activity (SNA) can occur acutely at varying magnitudes and in opposing directions. Sympathetic nerves also appear to contribute differentially to various disease states including hypertension and heart failure. Previously we have reported that sedentary conditions enhanced responses of splanchnic SNA (SSNA) but not lumbar SNA (LSNA) to activation of the rostral ventrolateral medulla (RVLM) in rats. Bulbospinal RVLM neurons from sedentary rats also exhibit increased dendritic branching in rostral regions of the RVLM. We hypothesized that regionally specific structural neuroplasticity would manifest as enhanced SSNA but not LSNA following activation of the rostral RVLM. To test this hypothesis, groups of physically active (10-12 weeks on running wheels) or sedentary, male Sprague-Dawley rats were instrumented to record mean arterial pressure, LSNA and SSNA under Inactin anesthesia and during microinjections of glutamate (30 nl, 10 mM) into multiple sites within the RVLM. Sedentary conditions enhanced SSNA but not LSNA responses and SSNA responses were enhanced at more central and rostral sites. Results suggest that enhanced SSNA responses in rostral RVLM coincide with enhanced dendritic branching in rostral RVLM observed previously. Identifying structural and functional neuroplasticity in specific populations of RVLM neurons may help identify new treatments for cardiovascular diseases, known to be more prevalent in sedentary individuals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

(In)activity-related neuroplasticity in brainstem control of sympathetic outflow: unraveling underlying molecular, cellular, and anatomical mechanisms.

More people die as a result of physical inactivity than any other preventable risk factor including smoking, high cholesterol, and obesity. Cardiovascular disease, the number one cause of death in the United States, tops the list of inactivity-related diseases. Nevertheless, the vast majority of Americans continue to make lifestyle choices that are creating a rapidly growing burden of epidemic ...

متن کامل

PHYSICAL (IN)ACTIVITY DEPENDENT ALTERATIONS AT THE ROSTRAL VENTROLATERAL MEDULLA: INFLUENCE ON SYMPATHETIC NERVOUS SYSTEM REGULATION (An Invited Review based on the APS NCAR New Investigator Award, 2009)

A sedentary lifestyle is a major risk factor for cardiovascular disease, and rates of inactivity and cardiovascular disease are highly prevalent in our society. Cardiovascular disease is often associated with overactivity of the sympathetic nervous system, which has both direct and indirect effects on multiple organ systems. Although it has been known for some time that exercise positively affe...

متن کامل

Selective enhancement of glutamate-mediated pressor responses after GABAA receptor blockade in the RVLM of sedentary versus spontaneous wheel running rats

Overactivity of the sympathetic nervous system (SNS) is a hallmark of many cardiovascular diseases. It is also well-known that physical inactivity independently contributes to cardiovascular diseases, likely in part via increased SNS activity. Recent work from our laboratory has demonstrated increased SNS responses in sedentary animals following either direct activation or disinhibition of the ...

متن کامل

Differential activation of adrenal, renal, and lumbar sympathetic nerves following stimulation of the rostral ventrolateral medulla of the rat.

Under acute and chronic conditions, the sympathetic nervous system can be activated in a differential and even selective manner. Activation of the rostral ventrolateral medulla (RVLM) has been implicated in differential control of sympathetic outputs based on evidence primarily in the cat. Although several studies indicate that differential control of sympathetic outflow occurs in other species...

متن کامل

Tonic and reflex control of the cardio-respiratory system by neurons in the ventral medulla

To investigate the channels and neurotransmitters in the ventrolateral medulla (VLM) oblongata that are responsible for the maintenance of sympathetic tone and cardio-respiratory reflex regulation. Microinjections of excitant amino acid (glutamate, 100 nl, 100 mM), calcium channel blockers, agonists and antagonists were made throughout the VLM in anaesthetized rats. Arterial blood pressure, sym...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016